08/22/2018
Toward the Light: Behind the Scenes
07/01/2018
Arch Linux: Chromebook C720 Webcam Microphone Disappeared
06/21/2018
SSH: How to Set Up a Simple Local Media Server
02/28/2018
Pacman: File Conflicts
01/17/2018
Making an Arch Linux USB Flash Install Medium
01/17/2018
Arch Linux: Post-Install Notes
01/15/2018
Binary Classification Metrics
01/14/2018
Probabilitistic Classification
01/09/2018
Classification and Perceptron
01/08/2018
Linear Regression: Bayesian Approach, Normal Conjugacy
01/08/2018
Nonlinearity: Basis Functions
01/04/2018
Linear Regression: A Probabilistic Approach
12/30/2017
Linear Regression: A Mathematical Approach
12/20/2017
2017 Reflections: A Year of Curating
12/19/2017
Introduction to Regression: K-Nearest Neighbors
12/18/2017
Welcome to my Miscellaneous Blog!
12/18/2017
A Definitive Arch Linux Install Guide for the Chromebook C720
10/01/2017
C4D: Volume Effector
09/18/2017
Algorithms: Maximum Sliding Window
09/10/2017
Introduction to Inference: Coins and Discrete Probability
09/05/2017
C4D: Unreliable Booles
08/30/2017
Welcome to my Tech Blog!
08/30/2017
Welcome to my Problem Solving Blog!
01/15/2018
tags: machine learning accuracy error
Depending on the situation, the simple “number of correct classifications” error metric might not be the best metric to use in binary classification. Here, we explore several metrics and how they might be used for different problems.
01/14/2018
tags: machine learning probability classification
In binary classification problems, we have an input feature vector and we’d like to classify it into one of two classes. We did this by minimizing reasonable loss functions based on activation functions. In this very long post, we’ll take a probabilistic approach to classification and detail the generative framework.
01/09/2018
tags: machine learning classification perceptron
We now leave the land of predicting real-numbered values to look at data classification. The discussion will conclude with one of the fundamental concepts behind classification, the Perceptron algorithm.
01/08/2018
tags: machine learning bayesian regression
Understanding the linear regression from a probabilistic perspective allows us to perform more advanced statistical inference. Today, we’ll be applying Bayesian inference concepts to the linear regression. As a result, we’ll have a way to update the beliefs of our models as more data becomes accessible or account for prior knowledge when looking at data.
01/08/2018
tags: machine learning non-linearity basis functions
We often work in linear space, but you might ask how we could capture nonlinearity? The answer lies in basis functions.
01/06/2018
tags: machine learning model selection overfitting
So far, we’ve looked at linear regression and K-Nearest Neighbors as potential models for estimating real-valued data. But how do we know which model is the best to use? In this post, we discuss overfitting, bias-variance decomposition, and regularization as factors when considering models.
01/04/2018
tags: machine learning linear regression probability
Today, we look at the regression under a probabilistic modeling context that help us understand the reasons behind the least squares loss function.
12/30/2017
tags: machine learning linear regression
In this post, we’ll take a look at linear regression from a mathematical lens, ignoring the statistical interpretation. Here, we provide the derivation and interpretation of the closed form solution for the weights.
12/19/2017
tags: machine learning k nearest neighbors
Here, we’ll look at the K-Nearest Neighbors approach toward understanding one of the core ideas of machine learning, the regression.
09/10/2017
tags: discrete inference machine learning
In data science, it all starts with a coin. Today, we’ll talk about the fundamentals of statistical inference for discrete models: how to determine the optimal parameters given data, how to incorporate prior knowledge, and how to make predictions. This assumes familiarity with random variables and the basics of probability theory.
08/30/2017
tags: intro
Welcome to my data science blog! Here, you’ll find posts about the various things I’m working on as well as tips and insights I’ve gained during the project.